LP- SASAKIAN MANIFOLDS WITH SOME CURVATURE PROPERTIES KANAK K. BAISHYA ${ }^{1}$, SHIBU BASAK ${ }^{2} \&$ SUBIR KUMAR DEY 3
${ }^{1}$ Kurseong College, Dowhill Road, Kurseong, Darjeeling, West Bengal, India
${ }^{2}$ Department of Mathematics, Kokrajhar College, Kokrajhar, Assam, India
${ }^{3}$ Research Scholar, Department of Mathematics, Bodoland University, Kokrajhar, Assam, India

Abstract

The object of the present paper is to study the extended generalised φ-recurrent LP-Sasakian manifolds. Also the existence of such manifold is ensured by an example.

KEYWORDS: LP-Sasakian Manifold, Generalised Recurrent LP-Sasakian Manifold, Extended Generalized φ - Recurrent LP-Sasakian Manifold, Quasi-Constant Curvature.

1. INTRODUCTION

In 1989, K. Matsumoto ([1]) introduced the notion of LP-Sasakian manifolds. Then I. Mihai \& R. Rosca ([3]) introduced the same notion independently \& obtained many interesting results. LP-Sasakian manifolds are also studied by U. C. Dey, K. Matsumoto \& A. A. Shaikh ([4]), I. Mihai, U. C. De \& A. A. Shaikh ([2]) \& others ([5], [6], [7]).

The notion of local symmetry of Riemannian manifolds has been weakened by many authors in several ways to a different extent. In [8] Takahasi introduced the notion of locally φ-symmetric Sasakian manifolds as a weaker version of local symmetry Riemannian manifolds. In [9], De et al studied the φ-recurrent Sasakian manifold. In [12], Al-Aqeel et al studied the notion of generalized recurrent LP-Sasakian maniofold. Generalised recurrent manifold is also studied by Khan [14] in the frame of Sasakian manifold. Recently, Jaiswal et al [11] studied generalised φ-recurrent LP-Sasakian manifold. Motivated from the work of Shaikh \& Hui, we propose to study extended generalized φ-recurrent LP-Sasakian manifold. The paper is organised as follows

In section 2, we give brief account of LP-Sasakian manifolds. In section 3, we study generalised φ-recurrent LPSasakian manifolds \& obtained that the associated vector field of the 1 -forms are co-directional with the unit timelike vector field ξ. Section 4 is concerned with extended generalised φ-recurrent LP-Sasakian manifolds \& found that such a manifold is generalised Ricci recurrent provided the 1 -forms are linearly dependent, whereas every generalized φ-recurrent LP-Sasakian manifold is generalised Ricci recurrent. Among others, we have also proved that such a manifold is of quasiconstant curvature \& the unit timelike vector ξ is harmonic. In section 5, the existence of extended generalised φ-recurrent LP-Sasakian manifold is ensured by an example.

AMS Subject Classification: 53C15, 53C25.

2. LP SASAKIAN MANIFOLDS

An n-dimensional differentiable manifold M is said to be an LP-Sasakian manifold ([6],[7],[8]), if it admits a (1,1)
tensor field φ, a unit timelike contravariant vector field ξ, and a 1 -form η and a Lorentzia metric g which satisfy the relations:

$$
\begin{align*}
& \eta(\xi)=-1, g(\mathrm{X}, \xi)=\eta(\mathrm{X}), \varphi^{2} \mathrm{X}=\mathrm{X}+\eta(\mathrm{X}) \xi, \tag{2.1}\\
& g(\varphi \mathrm{X}, \varphi \mathrm{Y})=g(\mathrm{X}, \mathrm{Y})+\eta(\mathrm{X}) \eta(\mathrm{Y}), \nabla_{\mathrm{x}} \xi=\varphi \mathrm{X}, \tag{2.2}\\
& \left(\nabla_{\mathrm{X}} \varphi\right)(\mathrm{Y})=g(\mathrm{X}, \mathrm{Y}) \xi+\eta(\mathrm{Y}) \mathrm{X}+2 \eta(\mathrm{X}) \eta(\mathrm{Y}) \xi, \tag{2.3}
\end{align*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g. It can be easily seen that in an LP-Sasakian manifold, the following relations hold:
$\varphi \xi=0, \eta(\varphi X)=0, \operatorname{rank} \varphi=\mathrm{n}-1$.
Again, if we put
$\Omega(\mathrm{X}, \mathrm{Y})=g(\mathrm{X}, \varphi \mathrm{Y})$,
for any vector field X, Y then the tensor field $\Omega(\mathrm{X}, \mathrm{Y})$ is a symmetric $(0,2)$ tensor field ([3],[7]). Also, since the vector field η is closed in an LP-Sasakian ([2], [4]) manifold, we have
$\left(\nabla_{\mathrm{x}} \eta\right)(\mathrm{Y})=\Omega(\mathrm{X}, \mathrm{Y}), \Omega(\mathrm{X}, \xi)=0$,
for any vector field X \& Y.
Let M be an n-dimensional LP-Sasakian manifold with structure $(\varphi, \xi, \mathrm{n}, \mathrm{g})$. Then the following relations hold ([7]):
$R(X, Y) \xi=\eta(Y) X-\eta(X) Y$,
$\eta(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z})=\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y})$,
$S(\mathrm{X}, \xi)=(\mathrm{n}-1) \eta(\mathrm{X})$,
$\left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \xi=2[\Omega(\mathrm{Y}, W) \mathrm{X}-\Omega(\mathrm{X}, W) \mathrm{Y}]-\varphi \mathrm{R}(\mathrm{X}, \mathrm{Y}) W$
$-\mathrm{g}(\mathrm{Y}, \mathrm{W}) \varphi \mathrm{X}+\mathrm{g}(\mathrm{X}, \mathrm{W}) \varphi \mathrm{Y}-$
$2[\Omega(\mathrm{X}, \mathrm{W}) \eta(\mathrm{Y})-\Omega(\mathrm{Y}, \mathrm{W}) \eta(\mathrm{X})] \xi$
$-2[\eta(\mathrm{Y}) \varphi \mathrm{X}-\mathrm{n}(\mathrm{X}) \varphi \mathrm{Y}] \eta(\mathrm{W})$,
$\mathrm{g}\left(\left(\nabla_{\mathrm{W}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{U}\right)=-\mathrm{g}\left(\left(\nabla_{\mathrm{W}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{U}, \mathrm{Z}\right)$,
for any vector field $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U}$ on M where R is the curvature tensor of the manifold.

3. GENERALISED Φ RECURRENT LP-SASAKIAN MANIFOLDS

Definition3.1. An LP-Sasakian manifold is called generalised φ-recurrent, if its curvature tensor R satisfies the condition:

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=\mathrm{A}(\mathrm{~W}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\mathrm{B}(\mathrm{~W})[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}], \tag{3.1}
\end{equation*}
$$

where A and B are two non-zero l-forms and these are defined as
$A(W)=g(W, \rho), B(W)=g(W, \sigma)$,
where ρ, σ are the vector fields associated to the 1-form A \& B respectively. If the 1-form B vanishes identically, then the equn. (3.1) becomes
$\varphi^{2}\left(\left(\nabla_{\mathrm{W}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=\mathrm{A}(\mathrm{W}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$,
and such manifold is known as φ-recurrent LP-Sasakian manifold which is studied by Al-Aqeel, De \& Ghosh [13].

Theorem3.1. Every Generalised φ-recurrent LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ is generalised Ricci recurrent. Proof: Using (2.1) in (3.1) \& then taking inner product in both sides by U , we have
$\mathrm{g}\left(\left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{U}\right)+\eta\left(\left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right) \eta(\mathrm{U})$
$=\mathrm{A}(\mathrm{W}) \mathrm{g}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{U})+\mathrm{B}(\mathrm{W})[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\mathrm{X}, \mathrm{U})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{U})]$
Let $\left\{\mathrm{e}_{\mathrm{i}}, i=1,2, \ldots, \mathrm{n}\right\}$ be an orthonormal basis at any point P of the manifold M . Setting $\mathrm{X}=\mathrm{U}=\mathrm{e}_{\mathrm{i}}$, in (3.3) \& taking summation over $\mathrm{i}, 1<\mathrm{i}<\mathrm{n}$, we get
n
$\left(\nabla_{W} S\right)(Y, Z)+\sum \eta\left(\left(\nabla_{w} R\right)\left(e_{i}, Y\right) Z\right) \eta\left(e_{i}\right)=0$.
$\mathrm{i}=1$
$=A(W) S(Y, Z)+(n-3) B(W) g(Y, Z)$.
In view of (2.9) \& (2.10), the expression
n
$\sum \eta\left(\left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{ei}, \mathrm{Y}) \mathrm{Z}\right) \eta(\mathrm{ei})=0$.
$\mathrm{i}=1$
By virtue of (3.5), (3.4) yields
$\left(\nabla_{\mathrm{W}} \mathrm{S}\right)(\mathrm{Y}, \mathrm{Z})=\mathrm{A}(\mathrm{W}) \mathrm{S}(\mathrm{Y}, \mathrm{Z})+(\mathrm{n}-3) \mathrm{B}(\mathrm{W}) \mathrm{g}(\mathrm{Y}, \mathrm{Z})$,
for all W, Y, Z. This completes the proof.
Corollary 3.1. Every generalised φ-recurrent LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ is an Einstein manifold. 109
Proof: Replacing Z by ξ in (3.6) \& using (2.8), we obtain
$(n-1) \Omega(W, Y)-S(Y, \varphi W)=(n-1) A(W) \eta(Y)+(n-3) B(W) \eta(Y)$.
Replacing Y by φY in (3.7) \& then using (2.2) \& (2.9), we get
$S(Y, W)=(n-1) g(Y, W)$,
for all Y \& W. This completes the proof.
Theorem.3.2. In a generalized φ-recurrent LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$, the Ricci tensor S along the associated vector field of the 1-form A is given by

$$
\begin{equation*}
S(Z, \rho)=(1 / 2)[r A(Z)+(n-3)(n-4) B(Z)] . \tag{3.9}
\end{equation*}
$$

Proof: Contracting over $Y \& Z$ in (3.6), we get
$\operatorname{dr}(\mathrm{W})=\mathrm{A}(\mathrm{W}) \mathrm{r}+(\mathrm{n}-3)(\mathrm{n}-2) \mathrm{B}(\mathrm{W})$,
for all W.
Again, contracting over $\mathrm{W} \& \mathrm{Y}$ in (3.6), we have
$(1 / 2) \operatorname{dr}(Z)=S(Z, \rho)+(n-3) B(Z)$.
By virtue of (3.10) \& (3.11), we get (3.9).This proves the theorem.
Theorem.3.3. In a generalised φ-recurrent LP-Sasakian manifold (M^{n}, g) ($n>3$), the associated vector field corresponding to the 1-forms $A \& B$ are co-directional with the unit timelike vector field ξ.

Proof: Setting $\mathrm{Z}=\xi$ in (3.9) \& using (2.8), we get
$\eta(\rho)=\left[\frac{(n-3)(n-4)}{2(n-1)-r}\right] \eta(\sigma)$.
This completes the proof.

4. EXTENDED GENERALIZED Φ-RECURRENT LP-SASAKIAN MANIFOLDS

Definition 4.1.([12]). An LP-Sasakian manifold is said to be extended generalised φ-recurrent, if its curvature tensor R satisfies the condition

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{\mathrm{W}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=\mathrm{A}(\mathrm{~W}) \varphi^{2}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z})+\mathrm{B}(\mathrm{~W})\left[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \varphi^{2}(\mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \varphi^{2}(\mathrm{Y})\right], \tag{4.1}
\end{equation*}
$$

where A and B are two non-zero 1-forms and these are defined as
$\mathrm{A}(\mathrm{W})=\mathrm{g}(\mathrm{W}, \rho), \mathrm{B}(\mathrm{W})=\mathrm{g}(\mathrm{W}, \sigma)$
and ρ, σ are vector fields associated to the 1 -form A \& B respectively.
Theorem 4.1. Let $\left(M^{n}, g\right)(n>3)$ be an extended generalised φ-recurrent LP-Sasakian manifold. Then such a manifold is a generalised Ricci recurrent LP-Sasakian manifold if the associated 1-forms are linearly dependent \& the vector fields of the associated 1-forms are of opposite directions.

Proof: Using (2.1) in (4.1) \& then taking inner product on both sides by U, we have
$\left.\left.\mathrm{g}\left(\left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{U}\right)+\eta_{(}\left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right) \mathrm{n}_{(\mathrm{U}}\right)$
$=\mathrm{A}(\mathrm{W})[\mathrm{g}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{U})+\mathrm{n}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}) \eta(\mathrm{U})]$
$+\mathrm{B}(\mathrm{W})[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\mathrm{X}, \mathrm{U})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{U})$

$$
\begin{equation*}
+[g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \eta(U)] . \tag{4.2}
\end{equation*}
$$

Let $\left\{\mathrm{e}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}$ be an orthonormal basis at any point P of the manifold M . Setting $\mathrm{X}=\mathrm{U}=\mathrm{e}_{\mathrm{i}}$, in (4.2) \& taking summation over $\mathrm{i}, 1<\mathrm{i}<\mathrm{n}$, we get

$$
\begin{align*}
& \left(\nabla_{\mathrm{w}} \mathrm{~S}\right)(\mathrm{Y}, \mathrm{Z})+\sum \eta\left(\left(\nabla_{\mathrm{w}} \mathrm{R}\right)\left(\mathrm{e}_{\mathrm{i}}, \mathrm{Y}\right) \mathrm{Z}\right) \eta\left(\mathrm{e}_{\mathrm{i}}\right)=0 . \\
= & \mathrm{A}(\mathrm{~W})[\mathrm{S}(\mathrm{Y}, \mathrm{Z})+\eta(\mathrm{R}) \xi(\mathrm{Y}, \mathrm{Z})] \\
+ & \mathrm{B}(\mathrm{~W})[(\mathrm{n}-2) \mathrm{g}(\mathrm{Y}, \mathrm{Z})-\eta(\mathrm{Y}) \eta(\mathrm{Z})] . \tag{4.3}
\end{align*}
$$

In view of (2.9) \& (2.10), the expression
n
$\sum \eta\left(\left(\nabla_{w} R\right)\left(e_{i}, Y\right) Z\right) \eta\left(e_{i}\right)=0$.
$\mathrm{i}=1$
By virtue of (2.7) \& (4.4), (4.3) yields
$\left(\nabla_{\mathrm{W}} \mathrm{S}\right)(\mathrm{Y}, \mathrm{Z})=\mathrm{A}(\mathrm{W}) \mathrm{S}(\mathrm{Y}, \mathrm{Z})+(\mathrm{n}-2) \mathrm{B}(\mathrm{W}) \mathrm{g}(\mathrm{Y}, \mathrm{Z})$
$-[A(W)+B(W)] \eta(Y) \eta(Z)$.
If the associated vector fields of the 1 -forms are of opposite directions, i.e., $A(W)+B(W)=0$, then (4.5) becomes

$$
\begin{equation*}
\left(\nabla_{\mathrm{w}} \mathrm{~S}\right)(\mathrm{Y}, \mathrm{Z})=\mathrm{A}(\mathrm{~W}) \mathrm{S}(\mathrm{Y}, \mathrm{Z})+(\mathrm{n}-2) \mathrm{B}(\mathrm{~W}) \mathrm{g}(\mathrm{Y}, \mathrm{Z}) . \tag{4.6}
\end{equation*}
$$

This completes the proof.
Theorem 4.2. Every extended generalised φ-recurrent LP-Sasakian manifold (M^{n}, g) ($n>3$) is an Einstein manifold.

Proof: Setting $\mathrm{Z}=\xi$ in (4.5) \& then using (2.2) \& (2.8), we get

$$
\begin{equation*}
(\mathrm{n}-1) \Omega(\mathrm{W}, \mathrm{Y})-\mathrm{S}(\mathrm{Y}, \varphi \mathrm{~W})=[\mathrm{nA}(\mathrm{~W})+(\mathrm{n}-1) \mathrm{B}(\mathrm{~W})] \underline{n}(\mathrm{Y}) . \tag{4.7}
\end{equation*}
$$

Replacing Y by φY in (4.7) \& using (2.2), (2.4) \& (2.9), we obtain
$\mathrm{S}(\mathrm{Y}, \mathrm{W})=(\mathrm{n}-1) \mathrm{g}(\mathrm{Y}, \mathrm{W})$,
for all Y, W. This completes the proof.
Theorem 4.3. In an extended generalised φ-recurrent $L P$-Sasakian manifold $\left(M^{n}, g\right)(n>3)$, the timelike vector field ξ is harmonic provided the vector fields associated to the 1-forms are codirectional.

Proof: In an extended generalised φ-recurrent LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$, the relation (4.2) holds. Replacing Z by ξ in (4.2), we have

$$
\begin{align*}
& \left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \xi=\mathrm{A}(\mathrm{~W}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi+\mathrm{B}(\mathrm{~W})[\eta(\mathrm{Y}) \mathrm{X}-\mathrm{\eta}(\mathrm{X}) \mathrm{Y}] \\
& =[\mathrm{A}(\mathrm{~W})+\mathrm{B}(\mathrm{~W})][\mathrm{n}(\mathrm{Y}) \mathrm{X}-\eta(\mathrm{X}) \mathrm{Y}] . \tag{4.9}
\end{align*}
$$

By virtue of (2.10) \& (4.9), we have
$\varphi R(X, Y) W=[A(W)+B(W)][\eta(X) Y-\eta(Y) X]$
$+2[\Omega(\mathrm{Y}, \mathrm{W}) \mathrm{X}-\Omega(\mathrm{X}, \mathrm{W}) \mathrm{Y}]-\varphi \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{W}$
$-\mathrm{g}(\mathrm{Y}, \mathrm{W}) \varphi \mathrm{X}+\mathrm{g}(\mathrm{X}, \mathrm{W}) \varphi \mathrm{Y}$
$-2[\Omega(\mathrm{X}, \mathrm{W}) \eta(\mathrm{Y})-\Omega(\mathrm{Y}, \mathrm{W}) \eta(\mathrm{X})] \xi$
$-2[\eta(\mathrm{Y}) \varphi \mathrm{X}-\eta(\mathrm{X}) \varphi \mathrm{Y}] \eta(\mathrm{W})$.
Taking inner product in both sides of (4.10) by $\varphi \mathrm{U}$ \& then using (2.2), we obtain
Ŕ $(\mathrm{X}, \mathrm{Y}, \mathrm{W}, \mathrm{U})=[\mathrm{A}(\mathrm{W})+\mathrm{B}(\mathrm{W})][\Omega(\mathrm{Y}, \mathrm{U}) \eta(\mathrm{X})-\Omega(\mathrm{X}, \mathrm{U}) \eta(\mathrm{Y})]$
$+2[\Omega(\mathrm{Y}, \mathrm{W}) \Omega(\mathrm{X}, \mathrm{U})-\Omega(\mathrm{X}, \mathrm{W}) \Omega(\mathrm{Y}, \mathrm{U})]$
$-\mathrm{g}(\mathrm{Y}, \mathrm{W}) \mathrm{g}(\mathrm{X}, \mathrm{U})+\mathrm{g}(\mathrm{X}, \mathrm{W}) \mathrm{g}(\mathrm{Y}, \mathrm{U})$
$+2[\mathrm{~g}(\mathrm{X}, \mathrm{W}) \eta(\mathrm{Y}) \eta(\mathrm{U})-\mathrm{g}(\mathrm{Y}, \mathrm{W}) \eta(\mathrm{X}) \eta(\mathrm{U})$
$+g(Y, U) \eta(W) \eta(X)-g(X, U) \eta(W) \eta(Y)]$,
where Ŕ $(X, Y, W, U)=g(R(X, Y) W, U)$.
Contracting over $\mathrm{X} \& \mathrm{U}$ in (4.11), we get
$\mathrm{S}(\mathrm{Y}, \mathrm{W})=2[\psi \Omega(\mathrm{Y}, \mathrm{W})-\mathrm{g}(\varphi \mathrm{Y}, \varphi \mathrm{W})]-\psi[\mathrm{A}(\mathrm{W})+\mathrm{B}(\mathrm{W})] \eta(\mathrm{Y})$

$$
\begin{equation*}
-(n-3) g(Y, W)-2(n-2) \eta(Y) \eta(W) \tag{4.12}
\end{equation*}
$$

where $\psi=\operatorname{Tr} . \varphi$.
Next setting $\mathrm{Y}=\xi$ in (4.12), we get
$\psi[\mathrm{A}(\mathrm{W})+\mathrm{B}(\mathrm{W})]=0$,
which yields $\psi=0$, because the vector fields associated to the 1 -forms are codirectional. Consequently, ξ is harmonic. This completes the proof.

Theorem 4.4. Every extended generalised φ-recurrent LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ is η--Einstein, if the vector fields associated to the 1-forms are codirectional.

Proof: Since in an generalised φ-recurrent LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$, the timelike vector field ξ is harmonic i.e., $\psi=0$ for $\mathrm{A}(\mathrm{W}) \neq-\mathrm{B}(\mathrm{W})$, it follows from (4.12) that
$S(Y, W)=-(n-1) g(Y, W)-2(n-1) \eta(Y) \eta(W)$,
which proves the theorem.
Definition 4.2. An LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ is said to be a manifold of quasi-constant curvature, if its cuvature tensor Ŕ of type $(0,4)$ satisfies:

Ŕ(X,Y, W, U) $=\operatorname{a}[\mathrm{g}(\mathrm{Y}, \mathrm{W}) \mathrm{g}(\mathrm{X}, \mathrm{U})-\mathrm{g}(\mathrm{X}, \mathrm{W}) \mathrm{g}(\mathrm{Y}, \mathrm{U})]$
$+b[g(Y, W) \eta(X) \eta(U)-g(X, W) \eta(Y) \eta(U)$
$+\mathrm{g}(\mathrm{X}, \mathrm{U}) \mathrm{n}(\mathrm{W}) \mathrm{n}(\mathrm{Y})-\mathrm{g}(\mathrm{Y}, \mathrm{U}) \mathfrak{n}(\mathrm{W}) \mathfrak{n}(\mathrm{X})]$,
where a \& b are scalars of which $\mathrm{a}, \mathrm{b} \neq 0$ \& $\dot{R}(\mathrm{X}, \mathrm{Y}, \mathrm{W}, \mathrm{U})=\mathrm{g}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{W}, \mathrm{U})$.
The notion of a manifold of quasi-constant curvature was first introduced by Chen \& Yano [10] in 1972 for a Riemannian manifold.

Theorem 4.5. An extended generalised φ-recurrent LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ is a manifold of quasiconstant curvature with associated scalars $a=-1, b=-2$, if \& only if
$[A(W)+B(W)][\Omega(Y, U) \eta(X)-\Omega(X, U) \eta(Y)]$
$=2[\Omega(X, W) \Omega(Y, U)-\Omega(Y, W) \Omega(X, U)]$,
holds for all vector fields X, Y, U, W on M.
Proof: In an extended generalised φ-recurrent LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$, the relation (4.11) is true. If the manifold of under consideration is of quasi-constant curvature with associated scalars $a=-1, b=-2$, then the relation (4.16) follows from (4.11).

Conversely, if in an extended generalised φ-recurrent LP-Sasakian manifold, the relation (4.16) holds, then it follows from (4.11) that the manifold is of quasi-constant curvature with associated scalars $\mathrm{a}=-1, \mathrm{~b}=-2$. This proofs the theorem.

Theorem 4.6. Let $\left(M^{n}, g\right)(n>3)$ be an extended generalised φ-recurrent LP-Sasakian manifold. Then the associated vector fields of the 1-form are related by
$\eta(\rho)=\left[\frac{(n-2)(n-3)}{2(n-1)-r}\right] \eta(\sigma)$.
Proof: Changing $\mathrm{X}, \mathrm{Y}, \mathrm{W}$ cyclically in (4.2) \& adding them, we get by virtue of Bianchi's identity that
$A(W)[R(X, Y) Z+\eta(R(X, Y) Z) \xi]+B(W)[g(Y, Z) X-g(X, Z) Y+g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi]$
$+\mathrm{A}(\mathrm{X})[\mathrm{R}(\mathrm{Y}, \mathrm{W}) \mathrm{Z}+\eta(\mathrm{R}(\mathrm{Y}, \mathrm{W}) \mathrm{Z}) \xi]+\mathrm{B}(\mathrm{X})[\mathrm{g}(\mathrm{W}, \mathrm{Z}) \mathrm{Y}-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}+\mathrm{g}(\mathrm{W}, \mathrm{Z}) \eta(\mathrm{Y}) \xi-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{W}) \xi]$
$+\mathrm{A}(\mathrm{Y})[\mathrm{R}(\mathrm{W}, \mathrm{X}) \mathrm{Z}+\eta(\mathrm{R}(\mathrm{W}, \mathrm{X}) \mathrm{Z}) \xi]+\mathrm{B}(\mathrm{Y})[\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{W}-\mathrm{g}(\mathrm{W}, \mathrm{Z}) \mathrm{X}+\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{W}) \xi-\mathrm{g}$
$(\mathrm{W}, \mathrm{Z}) ~ \cap(\mathrm{X}) \xi]=0$.
Taking inner product in both sides of (4.12) by \mathbf{U} B\& then contracting over $\mathrm{Y} \& \mathrm{Z}$, we obtain
$A(W)[S(X, U)+(n-2) \eta(X) \eta(U)]+A(X)[S(U, W)+(n-2) \eta(W) \eta(U)]$
$+(n-2) B(W)[g(X, U)+\eta(X) \eta(U)]-(n-2) B(X) g(\varphi W, \varphi U)$
$=R(W, X, U, \rho)$.
Again, contracting over $X \& U$ in (4.13), we get

$$
\begin{equation*}
\mathrm{S}(\mathrm{~W}, \rho)=(1 / 2)(\mathrm{r}-\mathrm{n}+2) \mathrm{A}(\mathrm{~W})-(1 / 2)(\mathrm{n}-2)^{2} \mathrm{~B}(\mathrm{~W})-(1 / 2)(\mathrm{n}-2) \mathrm{n}(\mathrm{~W})[\mathrm{n}(\rho)+\mathrm{n}(\sigma)] . \tag{4.19}
\end{equation*}
$$

Setting $W=\xi$, we obtain
$\eta(\rho)=\left[\frac{(n-2)(n-3)}{2(n-1)-r}\right] \eta(\sigma)$.
This completes the proof.

5. EXISTENCE OF GENERALIZED Ф-RECURRENT LP-SASAKIAN MANIFOLDS

Ex 5.1. We consider a 3-dimensional manifold $M=\left\{(x, y, z) \varepsilon R^{3}\right\}$, where (x, y, z) are the standard coordinates of R^{3}. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be linearly independent global form of M, given by
$e_{1}=e^{z}(\partial / \partial x), e_{2}=e^{z-a x}(\partial / \partial y), e_{3}=\partial / \partial z$, where a is non-zero constant.
Let g be the Lorentzian metric defined by
$g(\partial / \partial x, \partial / \partial x)=e^{-2 z}, g(\partial / \partial y, \partial / \partial y)=e^{2(a x-z)}, g(\partial / \partial z, \partial / \partial z)=-1$.
$g(\partial / \partial x, \partial / \partial y)=0, g(\partial / \partial y, \partial / \partial z)=0, g(\partial / \partial z, \partial / \partial x)=0$.
Let η be the 1 -form defined by $\eta(\mathrm{U})=\mathrm{g}\left(\mathrm{U}, \mathrm{e}_{3}\right)$, for any $\mathrm{U} \varepsilon \chi(\mathrm{M})$. Let φ be the $(1,1)$ tensor field defined by $\varphi\left(e^{\mathrm{z}} \partial / \partial \mathrm{x}\right)=-\mathrm{e}^{\mathrm{z}} \partial / \partial \mathrm{x}, \varphi\left(\mathrm{e}^{\mathrm{z}-\mathrm{x}} \partial / \partial \mathrm{y}\right)=-\mathrm{e}^{\mathrm{z}-\mathrm{ax}} \partial / \partial \mathrm{y}, \varphi(\partial / \partial \mathrm{z})=0$.

Then using the linearity of φ and g, we have
$\eta(\partial / \partial z)=-1, \varphi^{2} U=U+\eta(U) e_{3}, g(\varphi U, \varphi W)=g(U, W)+\eta(U) \eta(W)$,
for any $U, W \varepsilon \chi(M)$.
Thus for $\partial / \partial \mathrm{z}=\xi,(\varphi, \xi, \eta, g)$ defines a Lorentzian paracontact structure on M.
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor. Then we have,
$\left[e_{1}, e_{2}\right]=-e^{z} e_{2},\left[e_{1}, e_{3}\right]=-e_{1},\left[e_{2}, e_{3}\right]=-e_{2}$.
Taking $\mathrm{e}_{3}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate
$\nabla_{\mathrm{e} 1} \mathbf{e}_{1}=-\mathrm{e}_{3}, \quad \nabla_{\mathrm{e} 2} \mathrm{e}_{1}=\mathrm{ae}^{\mathrm{z}} \mathrm{e}_{2}, \quad \nabla_{\mathrm{e} 3} \mathrm{e}_{1}=0$,
$\nabla_{\mathrm{e} 1} \mathrm{e}_{2}=0, \nabla_{\mathrm{e} 2} \mathrm{e}_{2}=-\mathrm{ae}^{\mathrm{z}} \mathrm{e}_{1}-\mathrm{e}_{3}, \nabla_{\mathrm{e} 3} \mathrm{e}_{2}=0$,
$\nabla_{\mathrm{e} 1} \mathrm{e}_{3}=-\mathrm{e}_{1}, \nabla_{\mathrm{e} 2} \mathrm{e}_{3}=-\mathrm{e}_{2}, \nabla_{\mathrm{e} 3} \mathrm{e}_{3}=0$.
From the above, it can be easily seen that (φ, ξ, η, g) is an LP-Sasakian structure on M. Consequently $\mathrm{M}^{\mathbf{3}}(\varphi, \xi, \eta, g)$ is an LP-Sasakian manifold. Using the above relations, we can easily calculate the non- vanishing components of the curvature tensor as follows:
$R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, R\left(e_{2}, e_{3}\right) e_{2}=-e_{3}, R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}$
$R\left(e_{1}, e_{3}\right) e_{1}=-e_{3}, R\left(e_{1}, e_{2}\right) e_{1}=-\left(1-a^{2} e^{2 z}\right) e_{2}, R\left(e_{1}, e_{2}\right) e_{2}=\left(1-a^{2} e^{2 z}\right) e_{1}$,
and the components which can be obtained from these by the symmetry properties. Since $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$ forms a basis, any vector field $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \varepsilon \chi(\mathrm{M})$ can be written as:
$X=a_{1} e_{1}+b_{1} e_{2}+c_{1} e_{3}, Y=a_{2} e_{1}+b_{2} e_{2}+c_{2} e_{3}, Z=a_{3} e_{1}+b_{3} e_{2}+c_{3} e_{3}$, where $a_{i}, b_{i}, c_{i} \varepsilon R^{+} ; i=1,2,3$.
This implies that
$R(X, Y) Z=1 e_{1}+m e_{2}+n e_{3}$,
where $1=\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(1-a^{2} e^{2 z}\right) b_{3}-\left(a_{1} c_{2}+a_{2} c_{1}\right) c_{3}$,
$m=\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(1-a^{2} e^{2 z}\right) a_{3}+\left(b_{1} c_{2}-b_{2} c_{1}\right) c_{3}$,
$\mathrm{n}=\left(\mathrm{a}_{1} \mathrm{c}_{2}-\mathrm{a}_{2} \mathrm{c}_{1}\right) \mathrm{a}_{3}+\left(\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right) \mathrm{b}_{3}$,
$G(X, Y) Z=p e_{1}+\mathrm{qe}_{2}+\mathrm{re}_{3}$,
where $\mathrm{p}=\left(\mathrm{b}_{1} \mathrm{~b}_{2}-\mathrm{c}_{2} \mathrm{c}_{3}\right) \mathrm{a}_{1}-\left(\mathrm{b}_{1} \mathrm{~b}_{3}-\mathrm{c}_{1} \mathrm{c}_{3}\right) \mathrm{a}_{2}$,
$q=\left(a_{2} a_{3}-c_{2} c_{3}\right) b_{1}-\left(a_{1} a_{3}-c_{1} c_{3}\right) b_{2}$,
$r=\left(a_{2} a_{3}+b_{2} b_{3}\right) c_{1}-\left(a_{1} a_{3}+b_{1} b_{3}\right) c_{2}$.
By virtue of the above, we have
$\left(\nabla_{\mathrm{el}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=-\left(1 \mathrm{e}_{3}+\mathrm{ne}_{1}\right)$,
$\left(\nabla_{\mathrm{e} 2} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=-\mathrm{ae}^{\mathrm{Z}} \mathrm{me}_{1}+\left(\mathrm{ae}^{\mathrm{Z}} \mathrm{l}-\mathrm{n}\right) \mathrm{e}_{2}-\mathrm{me}_{3}$,
$\left(\nabla_{e 3} R\right)(X, Y) Z=2 a^{2} e^{2 z}\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(a_{3} e_{2}-b_{3} e_{1}\right)$.
Hence, $\varphi^{2}\left(\left(\nabla_{\mathrm{e} 1} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=-\mathrm{ne}_{1}$,
$\varphi^{2}\left(\left(\nabla_{\mathrm{e} 2} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=-\mathrm{ae}^{\mathrm{Z}} \mathrm{me}_{1}+\left(\mathrm{ae}^{\mathrm{Z}} 1-\mathrm{n}\right) \mathrm{e}_{2}$,
$\varphi^{2}\left(\left(\nabla_{e 3} R\right)(X, Y) Z\right)=2 a^{2} e^{2 z}\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(a_{3} e_{2}-b_{3} e_{1}\right)$,
$\varphi^{2}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z})=1 \mathrm{e}_{1}+\mathrm{me}_{2}$,
$\varphi^{2}(\mathrm{G}(\mathrm{X}, \mathrm{Y}) \mathrm{Z})=\mathrm{pe}_{1}+\mathrm{qe}_{2}$.
Let us choose the non-vanishing 1 -forms as
$\mathrm{A}\left(\mathrm{e}_{1}\right)=\mathrm{nq} /(\mathrm{lq}+\mathrm{mp}) ; \quad \mathrm{B}\left(\mathrm{e}_{1}\right)=-\mathrm{mn} /(\mathrm{lq}+\mathrm{mp}) ;$
$A\left(e_{2}\right)=\left[p n-(\mathrm{lp}+m q) \mathrm{ae}^{\mathrm{z}}\right] /(\mathrm{lq}+\mathrm{mp}) ; \quad \mathrm{B}\left(\mathrm{e}_{2}\right)=\stackrel{115}{\left[\ln -\left(\mathrm{l}^{2}-\mathrm{m}^{2}\right) \mathrm{ae}^{\mathrm{z}}\right] /(\mathrm{lq}+\mathrm{mp})}$
$A\left(e_{3}\right)=\left[2 \mathrm{a}^{2} \mathrm{e}^{\mathrm{z}}\left(\mathrm{a}_{1} \mathrm{~b}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)\left(\mathrm{a}_{3} \mathrm{p}-\mathrm{b}_{3} \mathrm{q}\right)\right] /(\mathrm{lq}+\mathrm{mp}) ;$
$B\left(e_{3}\right)=-\left[2 a^{2} e^{z}\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(a_{3} l+b_{3} m\right)\right] /(l q+m p)$
Thus,we have
$\varphi^{2}\left(\left(\nabla_{\text {ei }} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=\mathrm{A}\left(\mathrm{e}_{\mathrm{i}}\right) \varphi^{2}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z})+\mathrm{B}\left(\mathrm{e}_{\mathrm{i}}\right) \varphi^{2}(\mathrm{G}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}) ; \mathrm{i}=1,2,3$.
Consequently, the manifold under consideration is an extended generalized φ-recurrent LP-Sasakian manifold.
This leads to the following:
Theorem 5.1. There exists an extended generalised φ-recurrent LP Sasakian manifold which is not generalised φ-recurrent $L P$-Sasakian manifold.

REFERENCES

1. Matsumoto, K: On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci. 12 (1989), 151-156.
2. Mihai, I. Shaikh, A. A. and De, U. C.: On Lorentz an para-Sasakian manifolds, Korean J. Math. Sciences, 6 (1999), 1-13.
3. Mihai, I. \& Rosca, R.: On Lorentzian P-Sasakian manifold, Classical Analysis, World Scientific Publi., Singapore (1992), 155-169.
4. De, U.C.,Matsumoto, K. and Shaikh, A. A.: On Lorentz an para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina, al n. 3 (1999),149-158.
5. A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakian manifolds,Bull. Math. Soc. Sc. Math. Rommania Tome, 49(1997) No. 2, 2006, 197-205.
6. A. A. Shaikh, K. K. Baishya and S. Eyasmin, On the existence of some types of LP-Sasakian manifolds, Commun. Korean Math. Soc. 23 (2008), No. 1, 95-110.
7. A. A. Shaikh \& Baishya, K. K.: On φ-symmetric LP-Sasakian manifolds, Yokohama Math. J., 52 (2006), 97-112.
8. Takahashi, T.: Sasakian φ-symmetric spaces, Tohoku Math. J., 29 (1977), 91-113.
9. De, U. C. \& Guha, N.: On generalised recurrent manifolds, J. Net. Acad. Math. India, 9 (1991), 85-92.
10. Chen, B. \& Yano, K.: Hypersurfaces of a conformally space, Tensor N. S., 20 (1972), 315-321.
11. Jaiswal, J. P. \& Ojha, R. H.: On generalised φ - recurrent LP-Sasakian manifold, Kyungpook Math. J. 49 (2009), 779-788.
12. Shaikh, A. A. \& Hui, S. K.: On extended generalised φ - recurrent Kenmotsu manifolds, publications Del Ins. math., (89/103) (2011), 77-88.
13. Al-Aqeel, A., De, U. C. \& Ghosh, G. C.: On Lorentzian Para-Sasakian manifolds, Kuwait J. Sci. \& Engg., 31 (2004), 1-13.
14. Khan,Q.: On generalised recurrent Sasakian manifold, Kyungpook Math. J., 44 (2004), 167-172.
